一 自定义函数UDF

在Spark中,也支持Hive中的自定义函数。自定义函数大致可以分为三种:

  • UDF(User-Defined-Function),即最基本的自定义函数,类似to_char,to_date等
  • UDAF(User- Defined Aggregation Funcation),用户自定义聚合函数,类似在group by之后使用的sum,avg等
  • UDTF(User-Defined Table-Generating Functions),用户自定义生成函数,有点像stream里面的flatMap

自定义一个UDF函数需要继承UserDefinedAggregateFunction类,并实现其中的8个方法

示例

复制代码
import org.apache.spark.sql.Row
import org.apache.spark.sql.expressions.{MutableAggregationBuffer, UserDefinedAggregateFunction}
import org.apache.spark.sql.types.{DataType, StringType, StructField, StructType}

object GetDistinctCityUDF extends UserDefinedAggregateFunction{
  /**
    * 输入的数据类型
    * */
  override def inputSchema: StructType = StructType(
    StructField("status",StringType,true) :: Nil
  )
  /**
    * 缓存字段类型
    * */
  override def bufferSchema: StructType = {
    StructType(
      Array(
        StructField("buffer_city_info",StringType,true)
      )
    )
  }
/**
  * 输出结果类型
  * */
  override def dataType: DataType = StringType
/**
  * 输入类型和输出类型是否一致
  * */
  override def deterministic: Boolean = true
/**
  * 对辅助字段进行初始化
  * */
  override def initialize(buffer: MutableAggregationBuffer): Unit = {
    buffer.update(0,"")
  }
/**
  *修改辅助字段的值
  * */
  override def update(buffer: MutableAggregationBuffer, input: Row): Unit = {
    //获取最后一次的值
    var last_str = buffer.getString(0)
    //获取当前的值
    val current_str = input.getString(0)
    //判断最后一次的值是否包含当前的值
    if(!last_str.contains(current_str)){
      //判断是否是第一个值,是的话走if赋值,不是的话走else追加
      if(last_str.equals("")){
        last_str = current_str
      }else{
        last_str += "," + current_str
      }
    }
    buffer.update(0,last_str)

  }
/**
  *对分区结果进行合并
  * buffer1是机器hadoop1上的结果
  * buffer2是机器Hadoop2上的结果
  * */
  override def merge(buffer1: MutableAggregationBuffer, buffer2: Row): Unit = {
    var buf1 = buffer1.getString(0)
    val buf2 = buffer2.getString(0)
    //将buf2里面存在的数据而buf1里面没有的数据追加到buf1
    //buf2的数据按照,进行切分
    for(s <- buf2.split(",")){
      if(!buf1.contains(s)){
        if(buf1.equals("")){
          buf1 = s
        }else{
          buf1 += s
        }
      }
    }
    buffer1.update(0,buf1)
  }
/**
  * 最终的计算结果
  * */
  override def evaluate(buffer: Row): Any = {
    buffer.getString(0)
  }
}
复制代码

注册自定义的UDF函数为临时函数

复制代码
def main(args: Array[String]): Unit = {
    /**
      * 第一步 创建程序入口
      */
    val conf = new SparkConf().setAppName("AralHotProductSpark")
    val sc = new SparkContext(conf)
    val hiveContext = new HiveContext(sc)
  //注册成为临时函数
    hiveContext.udf.register("get_distinct_city",GetDistinctCityUDF)
  //注册成为临时函数
    hiveContext.udf.register("get_product_status",(str:String) =>{
      var status = 0
      for(s <- str.split(",")){
        if(s.contains("product_status")){
          status = s.split(":")(1).toInt
        }
      }
    })
}
复制代码

二开窗函数

row_number() 开窗函数是按照某个字段分组,然后取另一字段的前几个的值,相当于 分组取topN

如果SQL语句里面使用到了开窗函数,那么这个SQL语句必须使用HiveContext来执行,HiveContext默认情况下在本地无法创建。

开窗函数格式:

row_number() over (partitin by XXX order by XXX)

java:

复制代码
 SparkConf conf = new SparkConf();
   conf.setAppName("windowfun");
   JavaSparkContext sc = new JavaSparkContext(conf);
   HiveContext hiveContext = new HiveContext(sc);
   hiveContext.sql("use spark");
   hiveContext.sql("drop table if exists sales");
   hiveContext.sql("create table if not exists sales (riqi string,leibie string,jine Int) "
      + "row format delimited fields terminated by '\t'");
   hiveContext.sql("load data local inpath '/root/test/sales' into table sales");
   /**
    * 开窗函数格式:
    * 【 rou_number() over (partitin by XXX order by XXX) 】
    */
   DataFrame result = hiveContext.sql("select riqi,leibie,jine "
             + "from ("
            + "select riqi,leibie,jine,"
           + "row_number() over (partition by leibie order by jine desc) rank "
            + "from sales) t "
         + "where t.rank<=3");
   result.show();
   sc.stop();
复制代码

scala:

复制代码
 val conf = new SparkConf()
 conf.setAppName("windowfun")
 val sc = new SparkContext(conf)
 val hiveContext = new HiveContext(sc)
 hiveContext.sql("use spark");
 hiveContext.sql("drop table if exists sales");
 hiveContext.sql("create table if not exists sales (riqi string,leibie string,jine Int) "
  + "row format delimited fields terminated by '\t'");
 hiveContext.sql("load data local inpath '/root/test/sales' into table sales");
 /**
  * 开窗函数格式:
  * 【 rou_number() over (partitin by XXX order by XXX) 】
  */
 val result = hiveContext.sql("select riqi,leibie,jine "
       + "from ("
    + "select riqi,leibie,jine,"
    + "row_number() over (partition by leibie order by jine desc) rank "
    + "from sales) t "
   + "where t.rank<=3");
 result.show();
 sc.stop()
复制代码
转自:https://www.cnblogs.com/frankdeng/p/9301712.html